समीकरण $( x +1)^{2}+| x -5|=\frac{27}{4}$ के वास्तविक मूलों की संख्या है ............ |
$6$
$0$
$4$
$2$
मान $\alpha, \beta$ समीकरण $x ^{2}+(20)^{1 / 4} x +(5)^{1 / 2}=0$ के दो मूल हैं। तो $\alpha^{8}+\beta^{8}$ बराबर है
यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?
समीकरण ${x^2} + 5|x| + \,\,4 = 0$ के वास्तविक हल होंगे
माना $\alpha$ तथा $\beta$ दो वास्तविक संख्याऐं है जिनके लिए $\alpha+\beta=1$ तथा $\alpha \beta=-1$ हैं। माना किसी पूर्णांक $n \geq 1$ के लिए $p _{ n }=(\alpha)^{ n }+(\beta)^{ n }, p _{ n -1}=11$ तथा $p _{ n +1}=29$ हैं। तो $p _{ n }^{2}$ का मान है ........
समीकरण $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ का हल समुच्चय है